Công bố khoa học

Một số công bố khoa học của các cán bộ trong Bộ môn từ năm 2010:

  1. Nguyen Van Mau and Nguyen Minh Tuan, On the solvability in a closed form of a class of singular integral equationsVietnam J. Math , vol. 43, no. 4, p. 841 - 852, 2010.
  2. V.N. Huy, Q.A. Ngo, A new way to think about Ostrowski-like type inequalitiesComput. Math. Appl., vol. 59, no. 9, p. 3045-3052, 2010.
  3. W.J. Liu, Q.A. Ngo, An Ostrowski type inequality on time scales for functions whose second derivatives are boundedInequality Theory and Applications Vol. 6, Nova Science Pub Inc, ISBN: 978-1616686253, p. 133-141, 2010.
  4. W.J. Liu, Q.A. Ngo, W.B. Chen, Ostrowski type inequalities on time scales for double integrals,Acta Appl. Math., vol. 110 , no. 1, p. 477-497, 2010.
  5. H.H. Bang, V.N. Huy, Behavior of the sequence of norm of primitives of a functionJ. Approximation Theory , vol. 162, p. 1178-1186, 2010.
  6. W.J. Liu, Q.A. Ngo, W.B. Chen, On new Ostrowski type inequalities for double integrals on time scalesDynam. Systems Appl., vol. 19, p. 189-198, 2010.
  7. N.T. Chung, Q.A. Ngo, Multiple solutions for a class of quasilinear elliptic equations of p(x)-Laplacian type with nonlinear boundary conditionsProc. Roy. Soc. Edinburgh Sect. A, vol. 140, no. 2, p. 259-272, 2010.
  8. P.V. Hai, An extension of P. Preda, A. Pogan, C. Preda, Timisoara's theorems for the uniformly exponential stability of linear skew-product semiflowsBull. Math. Soc. Sci. Math. Roumanie (N.S.), vol. 53, no. 1, p. 69-83, 2010.
  9. V.N. Huy, Q.A. Ngo, New bounds for the Ostrowski-like type inequalitiesBull. Korean Math. Soc., vol. 48, p. 95-104, 2011.
  10. Q.A. Ngo, X. Xu, Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifoldsAdvances in Mathematics, vol. 230, p. 2378-2415, 2012.
  11. V.N. Huy, Q.A. Ngo, New inequalities of Simpson-like type involving n knots and the m-th derivativeMath. Comput. Modelling, vol. 52, p. 522-528, 2010.
  12. W.J. Liu, Q.A. Ngo, Some Iyengar-type inequalities on time scales for functions whose second derivatives are boundedAppl. Math. Comput., vol. 216, p. 3244-3251, 2010.
  13. H.H. Bang, V.N. Huy, Behavior of the sequence of norms of primitives of a function in Orlicz spacesEast J. Approx., vol. 17, no. 2, p. 141-150, 2011.
  14. V.N. Huy, Q.A. Ngo, On an Iyengar-type inequality involving quadratures in n knotsAppl. Math. Comput., vol. 217, no. 1, p. 289-294, 2010.
  15. N. V. Mau, N. M. Tuan, sormorphic theorem between algebra generated by idempotents and algebra of their symbolsSci. Math. Jpn, vol. 72, no. 1, p. 89-99, 2010.
  16. B. T. Giang, N. V. Mau, and N. M. Tuan, Convolutions for the Fourier transforms with geometric variables and applicationsMath. Nachr, no. 283, p. 1758–1770, 2010.
  17. N. V. Mau and N. M. Tuan, Isomorphic theorem between algebra generated by idempotents and algebra of their symbolsSc. Math. Japan, vol. 72, p. 341–351, 2010.
  18. H.Q. Toan, N.T. Chung, On some semilinear elliptic problems with singular potentials involving symmetryTaiwanese J. Math., vol. 15, no. 2, p. 623-631, 2011.
  19. H.H. Bang, N.V. Hoang, V.N. Huy, Best constants for the inequalities between equivalent norms in Orlicz spacesBull. Pol. Acad. Sci. Math., vol. 59, no. 2, p. 165174, 2011.
  20. V.N. Huy, N.T. Chung, Some generalizations of the Fejér and Hermite-Hadamard inequalities in Hölder spacesJ. Appl. Math. Inform., vol. 29, p. 859-868, 2011.
  21. P.V. Hai, The relation between the uniform exponential dichotomy and the uniform admissibility of the pair (lp,lq) on ⊝Asian-Eur. J. Math. , vol. 3, no. 4, p. 593-605, 2010.
  22. P.V. Hai, L.N. Thanh, The uniform exponential stability of linear skew-product semiflows on real Hilbert spaceMath. J. Okayama Univ., vol. 53, p. 173-183, 2011.
  23. P.V. Hai, Discrete and continuous versions of Barbashin-type theorem of linear skew-evolution semiflowsAppl. Anal., vol. 90, no. 12, p. 1897-1907, 2011.
  24. P.V. Hai, On two theorems regarding exponential stabilityAppl. Anal. Discrete Math., vol. 5, no. 2, p. 240-258, 2011.
  25. N.V. Thu, C.V. Tiep, On the nonexistence of parabolic boundary points of certain domains in C^2J. Math. Anal. Appl., vol. 389, p. 908-914, 2012.
  26. P.V. Hai, Continuous and discrete characterizations for the uniform exponential stability of linear skew-evolution semiflows Nonlinear Anal., vol. 72, no. 12, p. 4390-4396, 2010.
  27. N.T. Huy, T.V. Duoc, Integral manifolds and their attraction property for evolution equations in admissible function spacesTaiwanese J. Math., vol. 16, no. 3, p. 963-985, 2012.
  28. T.T.M. Hang, H.Q. Toan, On existence of weak solutions of Neumann problem for a system of semilinear elliptic equations in an unbounded domainActa Math. Vietnam, vol. 37, no. 1, p. 137, 2012.
  29. T.T.M. Hang, H.Q. Toan, On existence of weak solutions of Neumann problem for quasilinear elliptic equations involving p-Laplacian in an unbounded domainBull. Korean Math. Soc., vol. 48, no. 6, p. 1169-1182, 2011.
  30. N.D. Manh, A. Evgrafov, A.R. Gersborg, J. Gravesen, Isogeometric shape optimization of vibrating membranesComput. Methods Appl. Mech. Engrg., vol. 200, p. 1343-1353, 2011.
  31. J. Gravesen, A. Evgrafov, N.D. Manh, On the sensitivities of multiple eigenvaluesStruct. Multidiscip. Optim., vol. 44, no. 4, p. 583-587, 2011.
  32. T.T.M. Hang, H.Q. Toan, Existence of weak non-negative solutions for a class of nonuniformly boundary value problemBull. Korean Math. Soc., vol. 49, no. 4, p. 737-748, 2012.
  33. N.T. Huy, T.V. Duoc, Robustness of exponential dichotomy of evolution equations under admissible perturbations on a half-lineInt. J. Evol. Equ., vol. 5, no. 3, p. 281-298, 2010.
  34. Kim Kang-Tae, N.V. Thu, On the tangential holomorphic vector fields vanishing at an infinite type pointTransactions of the American Mathematical Society, to appear, 2013.
  35. P.V. Hai, Two new approaches to Barbashin theoremDyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., vol. 19, p. 773-798, 2012.
  36. Hyeseon Kim, Van Thu Ninh, Atsushi Yamamori, The automorphism group of a certain unbounded non-hyperbolic domainJ. Math. Anal. Appl., vol. 409, no. 2, p. 637-642, 2014.
  37. N.T. Dung, Keomkyo Seo, Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvatureAnn. Global Anal. Geom., vol. 41, no. 4, p. 447-460, 2012.
  38. N.T. Dung, A splitting theorem on smooth metric measure spacesArch. Math. (Basel), vol. 99, no. 2, p. 179-187, 2012.
  39. N.T. Dung, Chiung Jue Anna Sung, Smooth metric measure spaces with weighted Poincaré inequalityMath. Z., vol. 273, p. 613-632, 2013.
  40. N.Q. Dieu, N.T. Dung, Radial symmetric solution of complex Hessian equation in the unit ball,Complex Var. Elliptic Equ., vol. 58, no. 9, p. 1261-1272, 2013.
  41. N.T. Dung, Chiung-Jue Sung, Manifolds with a weighted Poincaré inequalityProc. Amer. Math. Soc., vol. 142, no. 5, p. 1783-1794, 2014.
  42. N.T. Huy, T.V. Duoc, Integral manifolds for partial functional differential equations in admissible spaces on a half-lineJ. Math. Anal. Appl., vol. 411, no. 2, p. 816-828, 2014.
  43. V.N. Huy, Q.A. Ngo, Some new results on the Fejér and Hermite-Hadamard inequalities,Rocky Mountain J. Math., vol. 43, no. 5, p. 1625-1636, 2013.
  44. Keonhee Lee, Le Huy Tien, Xiao Wen, Robustly shadowable chain components of C1 vector fieldsJ. Korean Math. Soc. , vol. 51, no. 1, p. 17-53, 2014.
  45. N.D. Sang, N.T. Thanh, Stable minimal hypersurfaces with weighted Poincaré inequality in a Riemannian manifoldCommun. Korean Math. Soc., vol. 29, no. 1, p. 123-130, 2014.
  46. V.N. Huy, Q.A. Ngô, A new Ostrowski-Gruss inequality involving 3n knotsAppl. Math. Comput., vol. 235, p. 272-282, 2014.
  47. N.T. Dung, N.T. Le Hai, N.T. Thanh, Eigenfunctions of the weighted Laplacian and a vanishing theorem on gradient steady Ricci solitonJ. Math. Anal. Appl., vol. 416, no. 2, p. 553-562, 2014.
  48. Q.A. Ngô, X. Xu, Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds in the null caseCommunications in Mathematical Physics, to appear, 2014.
  49. R. Gicquaud, Q.A. Ngo, A new point of view on the solutions to the Einstein constraint equations with arbitrary mean curvature and small TT-tensorClass. Quantum Grav., vol. 31, no. 195014, 2014.
  50. Q.A. Ngo, X. Xu, Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds in the positive caseBull. Inst. Math. Acad. Sin. (N.S.), vol. 9, no. 3, p. 451-485, 2014.
  51. A.V. Abanina, P.T. Tien, The algebraic equalities and their topological consequences in weighted spacesto appear in J. Math. Anal. Appl., 2014.
  • Website cựu sinh viên