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Introduction

Stochastic modelling has come to play an important role in many branches of

science and industry where more and more people have encountered stochastic

differential equations as well as stochastic difference equations. The stochastic

model can be used to solve a problem which evinces by accident, noise, etc.

This thesis is concerned with differential-algebraic equations (DAEs) subject to

stochastic perturbations of the formEdx(t) = (Ax(t) + g(t))dt+ f(t, x(t))dw(t),

x(t0) = x0,
(0.1)

where E,A ∈ Kn×n, the leading coefficient E is allowed to be a singular matrix

and w(t) is anm-dimensional Wiener process. While standard differential-algebraic

equations (DAEs) without random noise are today standard mathematical mod-

els for dynamical systems in many application areas, such as multibody systems,

electrical circuit simulation, control theory, fluid dynamics, and chemical engineer-

ing, the stochastic version is typically needed to model effects that do not arise

deterministically. In fact, an accurate mathematical model of a dynamic system

in electrical, mechanical, or control engineering often requires the consideration of

stochastic elements. Electronic circuit systems or multibody mechanism systems

with random noise are often modeled by stochastic differential algebraic equations

(SDAEs), or sometime called stochastic implicit dynamic systems. These models

have been studied recently. It is well known that, due to the fact that the dy-

namics of (0.1) are constrained, some extra difficulties appear in the analysis of

stability as well as numerical treatments of SDAEs. These difficulties are typically

characterized by index concepts. Note that, authors consider SDAEs only in the
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case of index-1.

As mentioned above, electronic circuit systems or multibody mechanism sys-

tems with random noise are often modeled by stochastic differential-algebraic equa-

tions (SDAEs), or sometimes called stochastic implicit dynamic systems. However,

the advent of many modern-day sampled-data control systems has necessitated a

study of stochastic discrete systems because they invariably include some stochas-

tic elements that can only change at discrete instants of time. Examples of sampled

data systems are digital computers, pulsed radar units, and coding units in most

communication systems. These lead to stochastic implicit difference equations

(SIDEs). They can also be obtained from SDAEs by some discretization methods.

In the case of deterministic, an implicit difference equation (IDE) can be described

in the form

Enx(n+ 1) = Anx(n) + qn, n ∈ N, (0.2)

where En, An ∈ Rd×d, x(n), qn ∈ Rd and En may be a singular matrix. IDEs are

the generalization of regular explicit difference equations, which have been well

investigated in the literature. They arise as mathematical models in various fields

such as population dynamics, economics, systems and control theory, and numerical

analysis. If qn = f(n)wn+1 is a random noise then we obtain a SIDE

Enx(n+ 1) = Anx(n) + f(n)wn+1, n ∈ N, (0.3)

where wn+1 is a stochastic variable which is independent of the state x(n). In this

case, if En is the identity matrix then (0.3) becomes a stochastic difference equation

which has attracted a good deal of attention from researchers in recent years.

Unlike stochastic difference equations, the analysis of SIDEs is more complicated.

Even the solvability analysis is not trivial.

On the other hand, in a lot of applications there is a frequently arising ques-

tion, namely, how robust is a characteristic qualitative property of a system (e.g.

stability) when the system comes under the effect of uncertain perturbations. The

aspect of developing measures of stability robustness for linear uncertain systems

with state-space description has received significant attention in system and con-
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trol theory. These measures can be characterized by stability radius. The problem

of evaluating and calculating this stability radius is of great importance, from both

theoretical and practical points of view, and has attracted a lot of attention from

researchers. For a systematic introduction to the topic, the interested readers are

referred to the earlier work, which contains, along with rigorous theoretical devel-

opments, also an extensive literature review on the subject. It is remarkable that

similar problems have been considered for many other types of linear dynamical

systems, including time-varying and time-delay systems, implicit systems, positive

systems, linear systems in infinite-dimensional spaces as well as linear systems with

respect to stochastic perturbations.

On the basis of the above discussion, we have chosen the doctoral thesis re-

search topic as "Stability and robust stability of differential-difference

equations with respect to stochastic perturbations". There arises a natural

question whether one can define measures of stability robustness for DAEs respect

to stochastic perturbations and, moreover, how to calculate these measures. To

the best of our knowledge, such kind of questions has not been addressed so far

in the literature, although different aspects of robust analysis for the stability of

DAEs respect to deterministic perturbations has been studied already. The first

purpose of the present thesis is to fill this gap. In the second chapter, we will

study the consistency condition of random noise and define the index-ν concept

for SDAEs. By using this index notion, we can establish the explicit expression of

the solution and the variation of constants formula. After that, we shall establish

the necessary and sufficient conditions for the exponential L2-stability of SIDEs

by using the method of Lyapunov functions which is well known for the stability

theory of dynamic systems. As the main result in this chapter, we will establish the

formula of the stability radius of DAEs with respect to stochastic perturbations.

A problem, however, occurs in the case that the equation may not be solvable

under stochastic perturbations, because then consistency conditions arise. To deal

with this problem either a reformulation of the system has to be performed which
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characterizes the consistency conditions or the perturbations have to be further

restricted.

In the third chapter, we are to perform the first investigation of SIDEs. The

most important qualitative properties of SIDEs are solvability and stability. To

study that, the index notion, which plays a key role in the qualitative theory

of SIDEs, should be taken into consideration in the unique solvability and the

stability analysis. Motivated by the index-1 concept for SDAEs and the index-ν

concept in the second chapter, in this chapter we will derive the index-1 concept for

time-varying SIDEs and the index-ν concept for SIDEs with constant coefficient

matrices. By using this index notion, we can establish the explicit expression

of solution, the variation of constants formula and the continuous dependence

on initial condition of solution. On the other hand, the method of Lyapunov

functions is well known for the stability theory of dynamic systems. By using this

method, we shall establish the necessary conditions for the mean square stability

of SIDEs. After that, characterizations of the mean square stability in the form of

the quadratic Lyapunov equations are discovered.

The thesis is organized as follows.

• In the first chapter, we recall concepts of the stochastic process, the Drazin in-

verse, the index of a matrix pair, stochastic differential equations, and stochas-

tic difference equations. We also mention some results on stability and stability

for stochastic differential equations and stochastic difference equations.

• In the second chapter, the solvability of SDAEs is presented and the formula

of the solution is derived. The mean square stability of SDAEs is studied and

the formula of stability radii are established.

• In the third chapter, the solvability of SIDEs is investigated and the formula

of the solution is provided. The mean square stability of SIDEs is derived by

using the method of Lyapunov functions and the comparison theorem.
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Chapter 1

Preliminary

1.1 Stochastic Processes

1.1.1. Basic notations of probability theory

Let (Ω,F , P ) be a probability space. A filtration is a family {Ft}t>0 of increas-

ing sub-σ-algebras of F (i.e. Ft ⊂ Fs ⊂ F for all 0 6 t < s < ∞). The filtration

is said to be right continuous if Ft = ∩s>tFs for all t > 0. When the probability

space is complete, the filtration is said to satisfy the usual conditions if it is right

continuous and F0 contains all P−null sets.

A family {Xt}t∈R of Rd− valued random variables is called a stochastic process

with parameter set (or index set) I and state space Rd. The parameter set I is

usually the halfline R+ = [0,∞), but it may also be an interval [a, b], the non-

negative integers or even subsets of Rd. Note that for each fixed t ∈ I we have a

random variable Ω 3 ω → Xt(ω) ∈ Rd.

On the other hand, for each fixed ω ∈ Ω we have a function I 3 t→ Xt(ω) ∈ Rd,

which is called a sample path of the process, and we shall write X.(ω) for the path.

We often write a stochastic process {Xt}t>0 as {Xt}, Xt or X(t).

1.1.2. Stochastic integral

Definition 1.1.1. (Definition of Itô’s integral) Let f ∈ M2([a, b];R). The Itô

integral of f with respect to {wt} is defined by∫ b

a

f(t)dwt = lim
n→∞

∫ b

a

gn(t)dwt in L2(Ω;R), (1.1)

where {gn(t)} is a sequence of simple processes such that

lim
n→∞

E
∫ b

a

‖f(t)− gn(t)‖2dt = 0. (1.2)
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1.1.3. Itô’s formula

Theorem 1.1.2. Let x(t) be a d−dimensional Itô’s process on t > 0 with the

stochastic differential

dx(t) = f(t)dt+ g(t)dw(t),

where f ∈ L1(R+;Rd) and g ∈ L2(R+;Rd×m). Let V ∈ C2,1(Rd × R+;R). Then

V (x(t), t) is again an Itô’s process with the stochastic differential given by

dV (x(t), t) =
[
Vt(x(t), t) + Vx(x(t), t)f(t)

+
1

2
Trace

(
gT (t)Vxx(x(t), t)g(t)

)]
dt+ Vx(x(t), t)g(t)dw(t) a.s.

1.2 Stochastic differential equations

1.2.1. Definitions

Consider the d-dimensional stochastic differential equation of Itô type

dx(t) = f(x(t), t)dt+ g(x(t), t)dw(t) on t0 6 t 6 T, (1.3)

with initial value x(t0) = x0. By the definition of stochastic differential, this

equation is equivalent to the following stochastic integral equation:

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dw(s) on t0 6 t 6 T. (1.4)

Definition 1.2.1. An Rd−valued stochastic process {x(t)}t06t6T is called a solu-

tion of equation (1.3) if it has the following properties:

(i) {x(t)} is continuous and Ft−adapted;

(ii) {f(x(t), t)} ∈ L1([t0, T ];Rd) and {g(x(t), t)} ∈ L2([t0, T ];Rd×m);

(iii) equation (1.4) holds for every t ∈ [t0, T ] with probability 1.

A solution {x(t)} is said to be unique if any other solution {x̂(t)} is indistinguish-

able from {x(t)}, that is

P{x(t) = x̂(t) for all t0 6 t 6 T} = 1.
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1.2.2. Existence and uniqueness of solutions

Theorem 1.2.2. Assume that there exist two positive constants K̂ and K such

that

(i) (Lipschitz condition) for all x, y ∈ Rd and t ∈ [t0, T ]

‖f(x, t)− f(y, t)‖2 ∨ ‖g(x, t)− g(y, t)‖2 6 K̂‖x− y‖2; (1.5)

(ii) (Linear growth condition) for all (x, t) ∈ Rd × [t0, T ]

‖f(x, t)‖2 ∨ ‖g(x, t)‖2 6 K(1 + ‖x‖2). (1.6)

Then there exists a unique solution x(t) to equation (1.3) and the solution belongs

toM2([t0, T ];Rd).

1.2.3. Stability of stochastic differential equations

Consider the following stochastic system

dx(t) = Ax(t) +
N∑
j=1

Dj∆j(Rx(t))dwj(t),

x(0) = x0.

(1.7)

For ∆ = (∆1, ...,∆N) we set ‖∆‖ = [
∑N

j=1 ||∆j||2]1/2.

Definition 1.2.3. The stability radius of A with respect to the stochastic multi-

perturbation structure ((Dj)j∈N, R) is

rK(A, (Dj)j∈N, R) = inf{||∆||; (1.7) is not L2 − stable }.

Definition 1.2.4. The stability radius of A with respect to the stochastic multi-

perturbation structure ((Dj)j∈N, R) is

rK(A, (Dj)j∈N, R) = inf{||∆||; (1.7) is not exponentially L2 − stable }

1.2.4. Stochastic differential algebraic equations

Consider the SDAEs of the type

Edx(t) + f(x(t), t)dt+G(x(t), t)dw(t) = 0, (1.8)
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where f : Rn × [t0, T ] → Rn is a continuous vector-valued function of dimension

n,G : Rn × [t0, T ] → Rn×m is an continuous n ×m−dimensional matrix-function,

we understand it as a stochastic integral equation

Ex(s)|tt0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

G(x(s), s)dw(s) = 0, (1.9)

where the second integral is an Itô integral.

Definition 1.2.5. A strong solution of (1.9) is a process x(·) = (x(t))t∈[t0,T ] with

continuous sample paths that fulfills the following conditions:

• x(·) is adapted to the filtration (Ft)t∈[t0,T ],

•
∫ t
t0
|fi(x(s), s)|ds <∞ a.s., ∀i = 1, ..., n, ∀t ∈ [t0, T ],∫ t

t0
gij(x(s), s)dw(s) <∞ a.s., ∀i = 1, ..., n, ∀j = 1, ...,m, ∀t ∈ [t0, T ],

• (1.9) holds a.s.

1.3 Stochastic difference equations

Now, let {Ω,F , P} be a basic probability space, Fn ∈ F , n ∈ N, be a family of

σ-algebraic, E be an expectation, {wn} : wn ∈ R be a sequence of mutually inde-

pendent Fn−adapted random variables and independent on Fk, k < n satisfying

Ewn = 0,Ew2
n = 1 for all n ∈ N. Consider the equation

x(n+ 1) = Anx(n) +R(n, x(n))wn+1, n ∈ N, (1.10)

with the initial condition

x(0) = x0. (1.11)

Here R : N× Rd → Rd is measurable.

Definition 1.3.1. The solution of (1.10) with the initial condition (1.11) is called:

• Mean square stable if for each ε > 0 there exists a δ > 0 such that E‖x(n)‖2 <

ε, ∀n ∈ N, if E‖x0‖2 < δ.

• Asymptotically mean square stable if it is mean square stable and with E‖x0‖2 <

∞ the solution x(n) of (1.10) satisfies limn→∞ E‖x(n)‖2 = 0.
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1.4 Index concepts

1.4.1. The concept of index-1 systems and theirs properties

Now, we introduce sub-spaces and matrices

Sn := {z ∈ Rd : Anz ∈ imEn}, n ∈ N,

Gn := En − AnTnQn, Pn := I −Qn,

Q̃n−1 := −TnQnG
−1
n An, P̃n−1 := I − Q̃n−1.

Lemma 1.4.1. The following assertions are equivalent

a) Sn ∩ kerEn−1 = {0};

b) the matrices Gn = En − AnTnQn is non-singular;

c) Rd = Sn ⊕ kerEn−1.

We now consider a linear implicit difference equation

Enx(n+ 1) = Anx(n) + qn, n ∈ N, (1.12)

and the homogeneous system associated with (1.12) is given by

Enx(n+ 1) = Anx(n), n ∈ N, (1.13)

where En, An ∈ Rd×d, qn ∈ Rd and the matrix En may be singular.

Definition 1.4.2. The linear implicit difference equations (1.13) is said to be of

index-1 tractable (index-1 for short) if for all n ∈ N the following conditions

(i) rank En = r = constant;

(ii) kerEn−1 ∩ Sn = {0},

hold.

1.4.2. The Drazin inverse

Regular pairs (E,A) can be transformed to Weierstraß-Kronecker canonical

form, i.e., there exist nonsingular matrices W, T ∈ Kn×n such that

E = W

 Ir 0

0 N

T−1, A = W

 J 0

0 In−r

T−1, (1.14)
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Definition 1.4.3. Consider a regular pair (E,A) with E,A ∈ Kn×n in Weierstraß-

Kronecker form (1.14). If r < n and N has nilpotency index ν ∈ {1, 2, ...}, i.e.,

N ν = 0, N i 6= 0 for i = 1, 2, ..., ν − 1, then ν is called the index of the pair (E,A)

and we write Ind(E,A) = ν. If r = n then the pair has index ν = 0.

Definition 1.4.4. Let E ∈ Kn×n have ν = IndE. A matrix X ∈ Kn×n satisfying

EX = XE, (1.15a)

XEX = X, (1.15b)

XEν+1 = Eν, (1.15c)

is called a Drazin inverse of E.

Theorem 1.4.5. Let E ∈ Kn×n with ν = IndE. There is one and only one decom-

position

E = C̃ + Ñ (1.16)

with the properties

C̃Ñ = ÑC̃ = 0, Ñ ν = 0, Ñ ν−1 6= 0, Ind C̃ 6 1. (1.17)

In particular, the following statements hold:

C̃DÑ = 0, Ñ C̃D = 0, (1.18a)

ED = C̃D, (1.18b)

C̃C̃DC̃ = C̃, (1.18c)

C̃DC̃ = EDE, (1.18d)

C̃ = EEDE, Ñ = E(I − EDE). (1.18e)

Theorem 1.4.6. Let E,A ∈ Kn×n satisfy AE = EA. Then we have

EAD = ADE, EDA = AED, EDAD = ADED. (1.19)

Moreover, if

kerE ∩ kerA = {0} (1.20)

then we have

(I − EDE)ADA = I − EDE. (1.21)
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Chapter 2

Stability radii of differential-algebraic

equations with respect to stochastic

perturbations

2.1 Stochastic differential algebraic equations of index-ν

In this section, we consider the linear stochastic differential-algebraic equations

with constant coefficients of the formEdx(t) = (Ax(t) + g(t))dt+ f(t, x(t))dw(t),

x(t0) = x0,
(2.1)

where E,A ∈ Kn×n are constant matrices, g : [t0,∞)→ Kn is a (ν − 1)-times con-

tinuously differentiable vector-valued function, w(t) is an m-dimensional Wiener

process, f : [t0,∞) × Kn → Kn×m plays the role of a perturbation such that it is

Lipschitz continuous in x, f(t, x(t)) is F -adapted and f(t, 0) is square integrable

on [t0, T ].

Definition 2.1.1. A function x : [t0,∞) × Ω → Kn is a called solution of the

initial value problem (2.1) if x is continuous and F -adapted,
∫ T
t0
‖x(t)‖dt <∞ a.s.,∫ T

t0
‖f(t, x(t))‖2dt <∞ a.s. for T > t0 and

Ex(t) = Ex0 +

∫ t

t0

(Ax(s) + g(s))ds+

∫ t

t0

f(s, x(s))dw(s)

a.s. for all t ∈ [t0,∞). The functions f, g and the initial condition x0 is called

consistent with (2.1) if the associated initial value problem has at least one solution.

Equation (2.1) is called solvable if for every consistent f, g and x0, the associated

initial value problem has a solution.
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2.1.1. Solvability of stochastic differential-algebraic equations

We first treat the special case where E and A commute, i.e.

EA = AE. (2.2)

According to Theorem 1.4.5, we have decomposition E = C̃+Ñ with the properties

of C̃ and Ñ as given there. We get the following lemma.

Lemma 2.1.2. Equation (2.1) with property (2.2) is equivalent to the system

C̃dx1(t) = Ax1(t)dt+ EDEg(t)dt+ EDEf(t, x(t))dw(t), (2.3a)

Ñdx2(t)=Ax2(t)dt+(I − EDE)g(t)dt+ (I−EDE)f(t, x(t))dw(t), (2.3b)

where

x1(t) = EDEx(t), x2(t) = (I − EDE)x(t). (2.4)

Moreover, equation (2.3a) is equivalent to the stochastic differential equation

dx1(t) = EDAx1(t)dt+ EDg(t)dt+ EDf(t, x(t))dw(t). (2.5)

Proposition 2.1.3. Let E,A ∈ Kn×n satisfy (2.2) and (1.20). Then the consistent

condition of the perturbation f for solvability of (2.1) is

(I − EDE)f = 0. (2.6)

Moreover, the solution of equation (2.3b) has only the form

x2(t) = −(I − EDE)
ν−1∑
i=0

AD(ADÑ)ig(i)(t), a.s. ∀t > t0, (2.7)

and the consistent condition of g, x0 for solvability of (2.1) is

(I − EDE)

(
x0 +

ν−1∑
i=0

AD(ADÑ)ig(i)(t0)

)
= 0.

Definition 2.1.4. The SDAE (2.1) is called tractable with index-ν (or for short,

of index-ν) if

i) Ind(E,A) = ν,

ii) (I − EDE)f = 0.
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Remark 2.1.5. In the case ν = 1 then the condition (I−EDE)f = 0 is equivalent

to im f ⊂ imE and we return the notation of index-1

Theorem 2.1.6. Asume that the SDAE (2.1) has index-ν and satisfies (2.2).

Then, the solution of (2.1) is given by the formula

x(t) =eE
DA(t−t0)EDEx0 − (I − EDE)

ν−1∑
i=0

AD(ADÑ)ig(i)(t)

+

∫ t

t0

eE
DA(t−s)g(s)ds+

∫ t

t0

eE
DA(t−s)f(s, x(s))dw.

(2.8)

2.1.2. Stability for stochastic differential-algebraic equations

In this subsection, we study the L2-stability and the exponential L2-stability for

SDAEs by using the method of Lyapunov functions. For defining the stability of

zero solution, in equation (2.1) we assume that g(t) = 0 and f(0, x) = 0. Moreover,

assume that there exist a1, a2 > 0 and a function γ(t) such that ‖f(t, x)‖ 6 γ(t)‖x‖

and
∫ t
t0
γ2(s)ds 6 a1(t− t0) + a2 for all t > t0. Let us consider the equationEdx(t) = Ax(t)dt+ f(t, x(t))dw(t),

x(t0) = x0,
(2.9)

where E,A ∈ Kn×n are constant matrices and w(t) be an m-dimensional Wiener

process. For solvability of (2.9), by Proposition 2.1.3, the initial condition x0 needs

to satisty the consistent condition (I − EDE)x0 = x2(t0) = 0, or equivalently,

x0 ∈ im (EDE).

Definition 2.1.7. Equation (2.9) is said to be L2-stable if
∫∞
t0

E(‖x(t, t0, x0)‖2)dt

<∞ for all x0 ∈ im (EDE). Equation (2.9) is said to be exponentially L2-stable if

there exist α, β > 0 such that

E‖x(t, t0, x0)‖2 6 βe−α(t−t0)‖x0‖2, (2.10)

for all t > t0 > 0 and x0 ∈ Im(EDE).

Theorem 2.1.8. Assume that the SDAE (2.9) has index-ν. Then equation (2.9)

is exponentially L2-stable if and only if there exists η > 0 such that∫ ∞
t0

E(‖x(t, t0, x0)‖2)dt 6 η‖x0‖2, (2.11)
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for all t > t0 > 0 and x0 ∈ im (EDE).

2.2 Stability radii for stochastic differential-algebraic equations with

respect to stochastic perturbations

In this section, we will develop approach to investigate the robust stability of

DAEs subject to stochastic perturbations. Consider the regular SDAEsEdx(t) = Ax(t)dt+ C∆(Bx(t))dw(t),

x(t0) = x0,
(2.12)

where E,A ∈ Kn×n are constant matrices, B ∈ Kq×n, C ∈ Kn×l are structure

matrices of perturbations, w(t) ∈ Rm, t > t0 > 0 are an m-dimensional Wiener

process and x0 is independent of w(t), t > t0 > 0 and the disturbance operator

∆ : Kq → Kl is Lipschitz continuous with ∆(0) = 0. The equation

Edx(t) = Ax(t)dt (2.13)

is called the deterministic part of (2.12). Assume that σ(E,A) ⊂ C−, or equiva-

lently, equation (2.13) is exponentially stable.

It is already known for the case of perturbed DAEs,that it is necessary to restrict

the perturbations in order to get a meaningful concept of the structured stability

radius, since a DAE system may lose its regularity, solvability and/or stability

under infinitesimal perturbations. We therefore introduce the allowable stochastic

perturbations which the consistency condition (3.18) is satisfied, i.e.,

(I − EDE)C = 0. (2.14)

Definition 2.2.1. Assume that condition (2.14) holds. Then, the L2-stability

radius and the exponential L2-stability radius of the exponentially stable equation

(2.13) with respect to the stochastic perturbation in the form of (2.12) are defined

by

rsK(E,A;C,B) = inf{‖∆‖; (2.12) is not L2 − stable},

resK (E,A;C,B) = inf{‖∆‖; (2.12) is not exponentially L2 − stable}.
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By Theorem 2.1.6 and the consistent initial condition EDEx0 = x0, the solution

of (2.12) satisfies the equation

x(t) = eE
DA(t−t0)x0 +

∫ t

t0

eE
DA(t−s)EDC∆(Bx(s))dw(s). (2.15)

Let

V = L2[[t0,∞), L2(Ω,Kl×m)],H0 = L2[[t0,∞), L2(Ω,Kn×n)],

H = L2[[t0,∞), L2(Ω,Kq×n)].

The spaces V ,H0,H are equipped by the inner product 〈·, ·〉 as follows

〈u(·), v(·)〉 =

∫ ∞
t0

E〈u(t), v(t)〉dt =

∫ ∞
t0

ETrace(v(t)∗u(t))dt.

With this inner product, V ,H0,H become the Hilbert spaces. We now define the

operators M : V −→ H0 by

(Mv)(t) =

∫ t

t0

eE
DA(t−s)EDCv(s)dw(s), (2.16)

and L : V −→ H by

(Lv)(t) = B(Mv)(t). (2.17)

Using Weierstraß-Kronecker canonical form for commutative matrix pair, we have

eE
DA(t−s)ED = T

 eJ(t−s) 0

0 0

T−1,
where J ∈ Kr×r with σ(J) = σ(E,A) ⊂ C−. Therefore there exist K,α > 0 such

that ∥∥∥eEDA(t−s)ED
∥∥∥ 6 Ke−α(t−s).

This implies that the operators M and L are bounded. Now, we derive an upper

bound for the perturbation such that equation (2.12) preserve the exponential

stability.

Define the matrix

Pρ = P ∗ρ = ρ2
∫ ∞
t0

ED∗e(E
DA)∗(t−t0)B∗BeE

DA(t−t0)EDdt. (2.18)

This is well-defined because ‖eEDAtED‖ 6 Ke−αt. Since E and A commute, it

implies that eEDAtED = EDeE
DAt. Therefore Pρ is a solution of the Liapunov
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equation

PρE
DA+ (EDA)∗Pρ + ρ2(BED)∗BED = 0, (2.19)

and satisfies Pρ(I−EDE) = 0.We now derive a computable formula for ‖L‖ based

on the matrix Pρ.

Proposition 2.2.2. Let Pρ be defined in equation (2.18). Then we have

‖L‖−1 = sup{ρ > 0 : Il − C∗PρC > 0}. (2.20)

By using construction of the stochastic perturbation destroying stability in [?],

we will construct a stochastic perturbation preserving stability with the norm near

the stability radius to get the formula of these radii.

Theorem 2.2.3. Assume that condition (2.14) holds. Then, the stability radii of

the exponentially stable equation (2.13) with respect to the stochastic perturbation

in the form of (2.12) is given by the formula

rsK(E,A;C,B) = resK (E,A;C,B) = ‖L‖−1. (2.21)

Example 2.2.4. Consider a DAE subject to stochastic perturbation:

EdX = AXdt+ C∆(BX)dw, (2.22)

where

E =

 1 −1

−1 1

 , A =

−2 2

2 −3

 , C =

−1 −1

1 1

 , B =
[
1 −1

]
.

By Theorem 2.2.3, we obtain

rsK(E,A;C,B) = resK (E,A;C,B) = rsK(E1, A1;C1, B) = resK (E1, A1;C1, B) =
√

2.

Now, we construct two perturbations

∆1(y) = ρ1‖y‖z1,∆2(y) = ρ2‖y‖z2,

where ρ1 = 1.5392, z1 =

0.866

0.5

 , ρ2 = 1, 412, z2 =

0.866

−0.5

. Then, it is easy to

see that ‖∆1‖ = ρ1 > ‖L‖−1 > ‖∆2‖ = ρ2. With the perturbation ∆1, equation

(2.12) is exponentially L2-unstable.With the perturbation ∆2, equation (2.12) is

exponentially L2-stable.
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Chapter 3

Stochastic implicit difference equations

3.1 Stochastic implicit difference equations of index-1

Let us consider the stochastic implicit difference equations (SIDEs)

Enx(n+ 1) = Anx(n) +R(n, x(n))wn+1, n ∈ N, (3.1)

with the initial condition x(0) = P̃−1x0, where En, An ∈ Rd×d with rank En = r <

d, the function R : N×Rd → Rd is measurable and {wn} : wn ∈ R is a sequence of

mutually independent Fn-adapted random variables, and independent on Fk, k < n

satisfying Ewn = 0,Ew2
n = 1 for all n ∈ N. The homogeneous equation associated

to (3.1) is

Enx(n+ 1) = Anx(n), n ∈ N. (3.2)

Now, we give a rigorous definition of solution of (3.1).

3.1.1. Solutions of stochastic implicit difference equations

Definition 3.1.1. A stochastic process {x(n)} is said to be a solution of the

SIDEs (3.1) if with probability 1, x(n) satisfies (3.1) for all n ∈ N and x(n) is Fn−

measurable.

Definition 3.1.2. The SIDE (3.1) called tractable with index-1 (or for short, of

index-1) if

i) The deterministic part (3.2) of (3.1) is a linear IDE with index-1.

ii) imR(n, ·) ⊂ imEn for all n ∈ N.

By using the above notion, we solve the problem of existence and uniqueness

of solution of (3.1) in the following theorem.
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Theorem 3.1.3. If equation (3.1) is of index-1, then for any n ∈ N and with the

initial condition x(0) = P̃−1x0, it admits a unique solution x(n) which given by the

formula

x(n) = P̃n−1u(n), (3.3)

where {un} is a sequence of Fn-adapted random variables defined by the equation

u(n+ 1) = PnG
−1
n Anu(n) + PnG

−1
n R(n, P̃n−1u(n))wn+1, n ∈ N.

3.1.2. The variation of constants formula for stochastic implicit differ-

ence equations

Now, to construct the variation of constants formula for equation (3.1), we need

to define the Cauchy operator Φ(n,m) of the corresponding homogeneous equation

(3.2). We have the following proposition.

Proposition 3.1.4. Let Φ(n,m) be the Cauchy operator Φ(n,m) of equation (3.2).

Then, we have

i) Φ(m,m) = P̃m−1;

ii) Φ(n,m)Φ(m, k) = Φ(n, k);

iii) Φ(n,m) =
∏n−1

k=m P̃kG
−1
k Bk.

Now we derive the variation of constants formula for the solution of equation

(3.1) in the following theorem.

Theorem 3.1.5. The unique solution of equation (3.1) can be expressed as

x(n) = Φ(n,m)Pm−1x(m) +
n−1∑
i=m

Φ(n, i+ 1)PiG
−1
i R(i, x(i))wi+1, (3.4)

where Φ(n,m) is the fundamental matrix of equation (3.2).

3.1.3. Dependence on the consistent initial condition of solution

Next, we consider the dependence on the consistent initial condition of solution

of equation (3.1). Assume that Rd is endowed with the Euclidean norm and there
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exists bn > 0 such that

‖R(n, x)−R(n, 0)‖ 6 bn‖x‖, for all x ∈ Rd.

Let

α := sup
06n6N

{
‖PnG−1n An‖2 + 2b2n‖PnG−1n ‖2‖P̃n−1‖2

}
,

β := sup
06n6N

‖PnG−1n R(n, 0)‖, γ := sup
06n6N

‖P̃n−1‖.

Theorem 3.1.6. Assume that x(n) be the unique solution of equation (3.1) and

E‖P−1x(0)‖2 <∞, n ∈ N. Then the following inequalities hold for all 0 6 n 6 N

E‖x(n)‖2 6 αnγ2E‖P−1x(0)‖2 +
2β2γ2(αn − 1)

α− 1
. (3.5)

3.2 Stability of stochastic implicit difference equations of index-1

In this section, we study stability of the SIDE (3.1) of index-1. It is well known

that the method of Lyapunov functions is very useful to investigate stability of

dynamic systems. Thus, we will use this method to derive characterizations of

mean square stability for equation (3.1). First, we introduce the following stability

notion which is generalized from Definition 1.3.1 for stochastic difference equations.

3.2.1. Stability of stochastic implicit difference equations

Definition 3.2.1. The trivial solution of equation (3.1) is called:

• Mean square stable if for any ε > 0 and there exists a δ > 0 such that

E‖x(n)‖2 < ε,∀n ∈ N, if E‖P−1x(0)‖2 < δ.

• Asymptotically mean square stable if it is mean square stable and with

E‖P−1x(0)‖2 <∞

the solution x(n) of (3.1) satisfies limn→∞ E‖x(n)‖2 = 0.

Theorem 3.2.2. Assume that γ0 := supn>0 ‖P̃n−1‖ < ∞ and there exists a non-

negative function Vn = V (n, Pn−1x(n)) which satisfies the conditions

EV (0, P−1x(0)) 6 c1E‖P−1x(0)‖2, (3.6)
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E∆Vn 6 −c2E‖Pn−1x(n)‖2, n ∈ N, (3.7)

where c1, c2 and p are positive constants. Then the trivial solution of equation (3.1)

is asymptotically mean square stable.

From Theorem 3.2.2, it follows that stability of SIDEs can be reduced to con-

struction of appropriate Lyapunov functions. Now, we derive characterizations for

stability of SIDEs in the form of the quadratic Lyapunov equations.

Theorem 3.2.3. Assume that there exist an, bn, c2 > 0 such that ||R(n, x)|| 6

bn||x|| and the matrix equation

AT
nHn+1An − ET

n−1HnEn−1 = −a2nP T
n−1Pn−1 (3.8)

has a nonnegative definite solution Hn satisfying for all n > 0

b2n‖Hn+1‖‖P̃n−1‖2 − a2n 6 −c2 < 0. (3.9)

Then the trivial solution of (3.1) is asymptotically mean square stable.

In the rest of this subsection, we consider implicit difference equations with

respect to linear stochastic perturbations. Let R(n, x(n)) = Znx(n) with Zn ∈

Rd×d, then equation (3.1) becomes

Enx(n+ 1) = Anx(n) + Znx(n)wn+1, n ∈ N, (3.10)

with the consistent initial condition

x(0) = P̃−1x0. (3.11)

Theorem 3.2.4. Assume that there exist c2 > 0 and a nonnegative definite matrix

Hn in Rd satisfying

AT
nHn+1An − ET

n−1HnEn−1 + ZT
nHn+1Zn = −c2P T

n−1Pn−1. (3.12)

Then the trivial solution of equation (3.10) is asymptotically mean square stable.

Moreover, if c2 < 0 and equation (3.12) has a nonnegative definite solution Hn then

the trivial solution of equation (3.10) is not asymptotically mean square stable.
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3.2.2. A comparison theorem for stability of linear stochastic implicit

difference equations of index-1

Theorem 3.2.5. Assume that K1 := supn>0 ‖P̃n−1‖ < ∞. Then if there exists a

positive sequence {αn} with K2 :=
∑∞

n=0 αn <∞ such that

‖PnG−1n An‖2 + ‖PnG−1n ZnP̃n−1‖2 6 1 + αn, ∀n > 0,

then equation (3.10) is mean square stable. If there exists a positive sequence {βn}

with
∑∞

n=0 βn =∞ such that

‖PnG−1n An‖2 + ‖PnG−1n ZnP̃n−1‖2 6 1− βn, ∀n > 0,

then equation (3.10) is asymptotically mean square stable.

3.3 Stochastic singular difference equations of index-ν

In this section, we consider the linear stochastic singular difference equations

(SSDEs) with constant coefficients of the formEx(n+ 1) = Ax(n) + f(n, x(n))wn+1,

x(n0) = x0,
(3.13)

where E,A ∈ Kn×n are constant matrices, f : N × Kn → Kn plays the role of a

perturbation.Without lost of generality assume that f(n, x(n)) is measurable

3.3.1. Solvability for stochastic singular difference equations of index-ν

First, we also treat the special case where E and A commute, i.e.

EA = AE. (3.14)

According to Theorem 1.4.5, we have decomposition E = C̃+Ñ with the properties

of C̃ and Ñ as given there. We get the following lemma.

Lemma 3.3.1. Equation (3.13) with property (2.2) is equivalent to the system

C̃x1(n+ 1) = Ax1(n) + EDEf(n, x(n))wn+1, (3.15a)

Ñx2(n+ 1)=Ax2(n)+ (I−EDE)f(n, x(n))wn+1, (3.15b)
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where

x1(n) = EDEx(n), x2(n) = (I − EDE)x(n). (3.16)

Moreover, equation (3.15a) is equivalent to the stochastic differential equation

x1(n+ 1) = EDAx1(n) + EDf(n, x(n))wn+1. (3.17)

Definition 3.3.2. A stochastic process {x(n)} is said to be a solution of the

SSDEs (3.13) if with probability 1, x(n) satisfies (3.13) for all n ∈ N and x(n) is

Fn− measurable.

Proposition 3.3.3. Let E,A ∈ Cn×n satisfy (3.14) and (1.20). Then the consis-

tency condition of the perturbation for solvability of (3.13) is

(I − EDE)f = 0. (3.18)

Moreover, the solution of equation (3.15b) has only the form

x2(n) = 0, a.s. ∀n ∈ N. (3.19)

Definition 3.3.4. The SSDE (3.13) is called tractable with index-ν (or for short,

of index-ν) if

i) Ind(E,A) = ν,

ii) (I − EDE)f = 0.

Next, we consider the dependence on the consistent initial condition of solution

of equation (3.13). Assume that Rn is endowed with the Euclidean norm and there

exists b > 0 such that

‖f(n, x)− f(n, 0)‖ 6 b‖x‖, for all x ∈ Rn.

Hence, Proposition 3.3.3, we have x2(n) = 0 implies x(n) = x1(n).

Let

α := sup
06n6N

{
‖EDA‖2 + 2b2n‖ED‖2

}
,

β := sup
06n6N

‖EDf(n, x(0))‖.
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Theorem 3.3.5. Let x(n) be the unique solution of equation (3.13) and E‖x(0)‖2 <

∞, n ∈ N. Then the following inequalities hold for all 0 6 n 6 N

E‖x(n)‖2 6 αnE‖x(0)‖2 +
2β2(αn − 1)

α− 1
. (3.20)

3.3.2. Stability for stochastic singular difference equations of index-̇ν

In this subsection, we study stability of the SSDEs of index-ν. It is well known

that the method of Lyapunov functions is very useful to investigate stability of

dynamic systems. Let us consider the equationsEx(n+ 1) = Ax(n) + f(n, x(n))wn+1,

x(0) = x0,
(3.21)

where E,A ∈ Kn×n are constant matrices.

Definition 3.3.6. The trivial solution of equation (3.21) is called:

• Mean square stable if for any ε > 0 and there exists a δ > 0 such that

E‖x(n)‖2 < ε,∀n ∈ N, if E‖EEDx(0)‖2 < δ.

• Asymptotically mean square stable if it is mean square stable and with E‖EEDx(0)‖2

<∞ the solution x(n) of (3.21) satisfies limn→∞ E‖x(n)‖2 = 0.

If the trivial solution of equation (3.21) is mean square stable (resp. asymptot-

ically mean square stable) then we say equation (3.21) is mean square stable (resp.

asymptotically mean square stable).

Theorem 3.3.7. Assume that there exist a, b, c2 > 0 such that ||f(n, x)|| 6 b||x||

and the matrix equation

(EEDA)THEEDA− (EEDE)THEEDE = −a2(EED)TEED (3.22)

has a nonnegative definite solution H satisfying

b2‖H‖ − a2 6 −c2 < 0. (3.23)

Then the trivial solution of (2.9) is asymptotically mean square stable.
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Conclusion

This thesis deals with two main problems.The following results have achieved:

1. Using the Drazin inverse approach to decouple the system into the differential

and algebraic subsystems. The consistent condition of the perturbation f is

also given.

2. Formulas of the stability radii for stochastic differential-algebraic equations

with respect to stochastic perturbations are derived.

3. We have established the explicit expression of the solution, the variation of

constants formula, and the continuous dependence on the initial condition.

4. Given the necessary conditions for the mean square stability of linear stochastic

implicit difference equations by using the method of solution evaluation.

5. Given the concept of the mean square stable and asymptotically mean square

stable, given theorems of necessary and sufficient conditions of stochastic sin-

gular difference equations, also investigated by using the method of Lyapunov

functions.

Here are some of our future research directions:

1. Give conditions for the L2−stable and exponentially L2−stable as well as stable

radii of time-varying stochastic differential-algebraic equations of index-1 and

index-ν.

2. Studying the stability and other control properties in stochastic differential-

algebraic equations.

3. Provides formulas to calculate the stable radii for stochastic difference implicit

equations.
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